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SUMMARY 
The solution of problems involving the scattering of plane electromagnetic waves by perfectly conducting 
obstacles is considered. The governing equations are Maxwell’s equations, which are expressed in a 
conservation form. The solution is then obtained by modifying a technique which was applied originally 
to the solution of the compressible Euler equations on a mesh consisting of an unstructured assembly of 
linear triangular elements in 2D or linear tetrahedral elements in 3D. The computed solution can be used 
to determine the radar cross-section of the scatterer. 

KEY WORDS Unstructured grids Electromagnetic scattering Time domain method 

1. INTRODUCTION 

Computational electromagnetics has been identified as a key technology for allowing advances 
in aerospace design. The development of suitable computational tools in this area is essential if 
stringent design requirements, such as low observability are to be met. In recent years the time 
domain method of solution of Maxwell’s equations has been developed as an alternative to the 
more traditional method-of-moments approach. The interest in the time domain method has 
been driven by the expectation that its reduced computational requirements should permit the 
modelling of the large problems which are of current industrial interest.’ 

A popular time domain approach for the solution of Maxwell’s equations is the method due 
to Yee,’ which is basically a finite difference algorithm implemented on a Cartesian mesh. 
Recently, more general finite volume algorithms have been introduced which are implemented 
on  curvilinear body-conforming grids.3 These recent developments have built upon the successful 
results of the major research effort which has been undertaken over the last 30 years in the area 
of computational fluid dynamics. 

Unstructured-grid-based finite element methods have been the subject of much recent research 
activity in the area of computational  aerodynamic^.^ The major attraction of the unstructured 
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grid approach is its geometrical flexibility and the availability of automatic unstructured mesh 
generators which can handle routinely computational domains of arbitrary geometric complex- 
 it^.'.^ These benefits of the unstructured approach will be of equal importance in the area of 
computational electromagnetics, but they can only be accessed if unstructured grid solution 
algorithms are developed for Maxwell’s equations.’.* 

In this paper we describe how an unstructured grid finite solver for the compressible Euler 
equations’ can be modified to deal with electromagnetic scattering problems. The performance 
of the resulting procedure is demonstrated by application to a number of problems in both two 
and three dimensions. 

2. MAXWELL’S EQUATIONS 

Maxwell’s equations governing the propagation of electromagnetic waves in free space are 
considered in the form 

dE* 
St 

= curl H*, &O 

dH* 
at 

po ~ = -curl E*. 

Here E* = ( E T ,  E:,  E:)  and H* = (HT,  H;,  H:) denote the electric and magnetic field intensity 
vectors respectively, c0 is the dielectric permittivity and p0 is the magnetic permeability of free 
space. For the development of the solution algorithm it is convenient to observe that this pair 
of equations may be expressed alternatively in the conservation form 

aU* dF* + ---L = 0, j = I ,  2, 3, 
at a x j  (3) 

relative to a Cartesian co-ordinate system Ox,x,x,, where the summation convention has been 
employed and where 

u* = [;;I. 
In this form the flux vectors are defined according to 

FT = FJ = 

(4) 

Considerable research effort has been expended recently into the development of accurate and 
efficient numerical techniques for the solution of problems involving compressible high-speed 
aerodynamic flows. For such problems the governing equations are generally considered in the 
conservation form of equation (3). The advantage of working with Maxwell’s equations expressed 
in this form is that numerical techniques which have been developed for the solution of the 
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equations of compressible flows can then be applied, with minor modification, to the simulation 
of scattering problems. 

For problems involving the scattering of electromagnetic waves by a perfectly conducting 
obstacle, the total fields E* and H* are regarded as being made up of incident and scattered 
components, i.e. 

(6)  

The incident fields Ei and Hi satisfy the above equations and hence so do the scattered fields E 
and H. The approach which is followed is then to solve equation (3) for the scattered field only. 

E* = Ei + E, H* = Hi + H. 

3. THE NUMERICAL SCHEME 

The algorithm which has been adopted to advance the solution in time is an explicit two-step 
finite-element-based Taylor-Galerkin pro~edure.~ This is the finite element equivalent of the 
finite difference Lax-Wendroff method l o  and results in an algorithm which is notionally 
second-order-accurate in both time and space. 

Discretization in time 

To develop the scheme, we consider a Taylor expansion of the solution U(x,t) in time in 
the form 

where the superscript n denotes an evaluation at time t = t, and the time step At = t ,+ - t,. 
This equation may be rewritten using the governing equation (3) to give the explicit time-stepping 
scheme 

where 

If the approximation 

is employed, equation (8) may be written as 

aF;+1/2 

S X j  
A U =  -At - - .  

Thus, if an initial approximation to U"+ 112 is determined from 



852 K .  MORGAN. 0. HASSAN AND J. PERAIRE 

and equation (1  1) is then used to determine the increment AU, the result is a two-step procedure 
for advancing the solution in time which does not involve the Jacobian matrices Aj. In practice, 
following the spatial discretization of the domain, this process is performed using the Galerkin 
approximation procedure.' ' 
Discretization in space 

The computational domain R is represented by an unstructured assembly of either linear 
three-noded triangular elements of four-noded tetrahedral elements. The discretization of the 
computational domain is accomplished by the use of an advancing front mesh generation 
m e t h ~ d . ~  Piecewise linear approximations are employed for the increment AU, the solution U" 
and the fluxes Fj" in the form 

AU z A@ = NjAUj, U = NjU;, Fj" z = NjFj"j, (13) 

where N, denotes the linear finite element shape function associated with node J of the mesh. 
The functions U"+ and F;+ '" are represented in a piecewise linear discontinuous fashion, 
which means that for each element e in the mesh 

where the summations over the subscript J in equation (14) are taken only over the nodes 
belonging to element e. These quantities are therefore determined directly for each element in 
turn and equation (1 1) is then approximately satisfied via a Galerkin statement. The resulting 
system of equations may be written as 

M6U = R, (15) 

where typical entries in the matrices appearing here are defined by 

(16) 

In the derivation of the expression for Rj ,  the divergence theorem has been applied and 
n = ( n l ,  n 2 ,  n3) denotes the unit outward normal to the boundary r of R. For the computations 
which have been performed to date, the explicit character of the scheme has been maintained 
by replacing the standard consistent mass matrix M by its lumped (diagonal) equivalent. 

The electromagnetic waves are propagated with a speed l / , / ( ~ ~ p ~ )  and this explicit scheme 
will be stable provided that a standard CFL-type condition is satisfied." The allowable time 
step for the stability of the above scheme is determined by initially sweeping through each 
element e of the mesh in turn and computing 

where he denotes the minimum height of element e. 
Single-frequency incident waves of the form 
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are considered, where Uo is a constant a n d j  = ,/( - 1). The solution is advanced in time through 
a prescribed number of cycles until ‘steady’ conditions are achieved. A further cycle is then 
computed, during which time the solution at each node in the mesh is monitored to determine 
the amplitudes and phases of the components of the scattered electric and magnetic fields. 

Boundary conditions 

When solving for the scattered fields, correct scattered field boundary conditions need to 
be imposed at the surface of the scatterer. When the scatterer is a perfect conductor, the boundary 
conditions require that the tangential component of the total electric field and the normal 
component of the total magnetic field should both be zero at the surface. This implies that at 
the scatterer the scattered field components must satisfy the conditions 

n x E =  -n x Ei, n * H  = - n - H i ,  (19) 

where n denotes the unit normal vector to the surface. 
In the scattering simulations which will be considered here, the infinite region surrounding 

the scatterer will be represented by a finite computational domain. The correct boundary 
condition which should be imposed at the outer computational boundary is then that the 
scattered field consists of only outgoing waves. In an attempt to prevent any wave reflection at 
this boundary, this condition is achieved by a simple filtering technique12 which involves the 
explicit addition of diffusion’ to the governing equations in the vicinity of the outer boundary. 

4. THE COMPUTATION OF THE RCS 

Far-field scattering data can be obtained from the results of the time domain computation by 
employing a near-field to far-field transformation. This procedure is outlined here for the three- 
dimensional case, but the two-dimensional situation can be handled in a similar fashion. We 
consider an arbitrary surface S which completely encloses the scatterer and employ the surface 
equivalence theoremL4 to set up an equivalent problem in the region external to S. 

The solution computed by the time domain solver is used to determine the distribution of the 
scattered fields E and H on the surface S. These fields are then employed to obtain equivalent 
surface electric and magnetic currents J and M respectively on S according to 

J = n x H ,  M = - n x E ,  (20) 

where n now denotes the unit outward normal vector to S. 

point x = (xl ,  x 2 ,  x3) outside S can be obtained in the form 
Removing the time-harmonic component, the corresponding vector potentials A and F at any 

where 

R2 = (XI - + (x2 - + ( ~ 3  - (22) 

denotes the square of the distance from the point x’ = (x’,,x>,x>) on S to the point x. If the 
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co-ordinates (x, , x2, x3) are expressed in terms of spherical polar co-ordinates ( r ,  8, $), the 
far-field forms of these relations become apparent as 

where 

r* = x’, sin 6 cos 4 + x; sin 6 sin 4 + x; cos 0, (24) 

and the corresponding far-field components of the scattered electric field can be determined in 
spherical polar form as 

E,  z 0. E0 = - jPqAs - j P F , ,  E ,  z - j p q A ,  + j b F e .  (25) 

Here 

‘I = J(2) 
and 

A ,  = A ,  cos 8 cos 4 + A ,  cos 6 sin 4 - A ,  sin 0, A ,  = - A ,  sin 4 + A ,  cos 4, (27) 

with similar expressions for F, and F,. The radar cross-section (T is computed as 

and the computational implementation outputs the quantity RCS which is defined by 

RCS = 10 Iog,,(a). (29) 

I t  should be noted that in the computations which are presented below, the surface S is chosen 
to coincide exactly with the surface of the scatterer. 

5. NUMERICAL EXAMPLES 

Scattering by a circular cylinder 

The first computations involve the simulation of the scattering of plane TE and TM waves 
by an infinite circular cylinder. These examples can be used for code validation, since analytical 
solutions are a~ai lab1e. l~ For both polarizations the chosen incident wave is such that PL = 3n, 
where L is the cylinder radius. A detail of the computational domain and the mesh employed 
for the TE simulation are shown in Figure l(a). The mesh consists of 68,612 elements and 34,632 
nodes. A detail of the computed contours of the scattered H,-field is given in Figure l(b). The 
exact and numerically determined distributions of the RCS values are compared in Figure l(c). 

The TM simulation is undertaken on a coarser grid consisting of 39,584 elements and 20,085 
nodes. A detail of the computed contours of the scattered E,-field is shown in Figure 2(a). The 
exact and numerically determined distributions of the RCS values are compared in Figure 2(b). 
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Scattering by an N A C A  0012 aerofoil 

The simultation of the scattering of a plane TE wave by an NACA 0012 aerofoil is computed 
for the case PL = 2n, where L is now the chord length of the aerofoil. The mesh consists of 
51.316 elements and 25,886 nodes and a detail of this mesh in the vicinity of the aerofoil is 
shown in Figure 3(a). The computed amplitude of the scattered H,-field is displayed in Figure 
3(b). The predicted RCS distribution is given in Figure 3(c). 

Scattering bl. a semi-open cavity 

This configuration is also of interest to the aerospace industry since it can be regarded as 
an idealized closed air intake. Geometrically, the configuration consists of two parallel walls 
which are connected at the right-hand end. This produces a semi-open cavity in the shape of a 
letter U rotated by 90". The thickness of the walls is denoted by t and the outer dimensions are 
given by a + t and b + 2r. This implies that the inner cavity has dimensions a and 6. The 
simulation involves the scattering of a plane TE wave for which PL = 2n by a cavity for which 

(a) 
Figure 1. Scattering of a plane TE wave by a circular cylinder: (a) detail of the computational domain and the mesh 
employed: (b) detail of the computed contours of the scattered H,-field; (c) comparison between the distribution of the 

exact and the computed RCS 
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Figure 2. Scattering of a plane TM wave by a circular cylinder: (a) detail of the computed contours of the scattered 
E,-field; (b) comparison between the distribution of the exact and the computed RCS 

(b) 
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Figure 3. Scattering of a plane TE wave by an NACA 0012 aerofoil: (a) detail of the mesh employed: (b) computed 
contours of the amplitude of the scattered H,-field: (c) distribution of the computed RCS 
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Figure 4. Scattering of a plane TE wave by a semi-open cavity: (a) detail of the mesh employed; (b) computed contours 
of the total HJield; (c) distribution of the computed RCS 
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Figure 5. Scattering of a plane wave by a cone sphere: (a) partial view of the triangulation of the boundaries of the 
computational domain; (b) a cut through the complete volume mesh; (c) the scattered E-field vectors on the surface of 

the cone sphere 
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Figure 5 (continued) 

a = 4L, p = L and t = 0.2L, with the incident wave propagating in a direction which lies at an 
angle of 30" to the axis of the cavity. The mesh employed consists of 47,645 elements and 24,461 
nodes and a detail of the mesh is shown in Figure 4(a). The computed contours of the total 
H,-field are shown in Figure qb) .  The predicted RCS distribution is given in Figure 4(c). 

These two-dimensional computations were performed interactively on the SERC CRAY YMP 
at the Rutherford Appleton Laboratory. C ~ l o u r i n g ' ~  of the elements in the mesh ensures that 
the computer code can be vectorized and a highly efficient computational procedure results. The 
typical memory requirements are around 1.5 Mwords for a mesh of 50,000 triangular elements 
and run times of the order of 10 min were required to perform 800 time steps. 

Scattering by a cone sphere configuration 

To illustrate the 3D capability of the proposed procedure, we consider the simulation of 
the scattering of a plane wave by a cone sphere configuration. The incident wave is such that 
pL = 3 . 8 6 4 ~  and BR = 7c, where L is the height of the cone and R is the radius of the sphere. 
The mesh employed consists of 664,114 tetrahedral elements and 105,938 nodes. A partial view 
of the triangulation of the computational boundary is shown in Figure 5(a), while Figure 5(b) 
gives an indication of the mesh density by showing a cut taken through the complete volume 
mesh. The solution is advanced for 5 cycles and the corresponding form of the scattered E-field 
on the surface of the cone sphere is indicated in Figure 5(c). 

6. CONCLUSIONS 

A time domain solver for the solution of the Maxwell equations on general unstructured 
triangular and tetrahedral meshes has been developed. In its present form the code provides an 
initial capability for the efficient simulation of electromagnetic scattering by perfectly conducting 
2D and 3D bodies of general shape. Future work with this solver will concentrate upon full 
validation of the 3D capability and the incorporation of multi-material modelling. Recent 
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developments’ in improving the efficiency and accuracy of unstructured mesh solvers for 
computational fluid dynamics will also need to be considered in the context of computational 
electromagnet ics. 
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